Phase Coupling Estimation from Multivariate Phase Statistics

نویسندگان

  • Charles F. Cadieu
  • Kilian Koepsell
چکیده

Coupled oscillators are prevalent throughout the physical world. Dynamical system formulations of weakly coupled oscillator systems have proven effective at capturing the properties of real-world systems and are compelling models of neural systems. However, these formulations usually deal with the forward problem: simulating a system from known coupling parameters. Here we provide a solution to the inverse problem: determining the coupling parameters from measurements. Starting from the dynamic equations of a system of symmetrically coupled phase oscillators, given by a nonlinear Langevin equation, we derive the corresponding equilibrium distribution. This formulation leads us to the maximum entropy distribution that captures pairwise phase relationships. To solve the inverse problem for this distribution, we derive a closed-form solution for estimating the phase coupling parameters from observed phase statistics. Through simulations, we show that the algorithm performs well in high dimensions (d = 100) and in cases with limited data (as few as 100 samples per dimension). In addition, we derive a regularized solution to the estimation and show that the resulting procedure improves performance when only a limited amount of data is available. Because the distribution serves as the unique maximum entropy solution for pairwise phase statistics, phase coupling estimation can be broadly applied in any situation where phase measurements are made. Under the physical interpretation, the model may be used for inferring coupling relationships within cortical networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase II monitoring of multivariate simple linear profiles with estimated parameters

In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...

متن کامل

A multivariate phase distribution and its estimation

Circular variables such as phase or orientation have received considerable attention throughout the scientific and engineering communities and have recently been quite prominent in the field of neuroscience. While many analytic techniques have used phase as an effective representation, there has been little work on techniques that capture the joint statistics of multiple phase variables. In thi...

متن کامل

Biologically Inspired Four Elements Compact Antenna Arrays With Enhanced Sensitivity for Direction of Arrival Estimation

A new four elements compact antenna array is presented and discussed to achieve enhanced phase resolution without sacrificing the array output power. This structure inspired by the Ormia Ochracea’s coupled ears. The analogy between this insect acute directional hearing capabilities and the electrically compact antenna array is used to enhance the array sensitivity to direction of arrival estima...

متن کامل

نقش دینامیک شبکه در ابررسانای La2-xBaxCuO4 به روش DFT

Electron-phonon coupling parameters are calculated for La2-x BaxCuO4 cuprate superconductor in a wide range of dopings, from undoped to overdoped compounds. In this study we aim to study the quality of such calculations based on DFT method so, the results of σ GGA+U electronic structure calculations are also investigated. The obtained value for electron-phonon coupling is in the same order of p...

متن کامل

Detecting event-related changes of multivariate phase coupling in dynamic brain networks.

Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Computation

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2010